Name:	Practice
Block:	

Algebra 2/Trig H

Collection of problems as practice for the final

Test Format:

- 1. The test has about <u>30</u> questions. Some with multiple parts.
- 2. You have 120 minutes to complete the test (more if you have accommodations).

Common test instructions:

- 3. You should SHOW YOUR WORK for all parts of the answer to receive full credit.
- 4. Write your answers using either blue or black ink or a pencil. Please don't use red pen.
- 5. There is a clearly indicated space to write down your answer for each question. CLEARLY write your final answer in the space provided. Only ONE answer per question will be considered.

Calculator is NOT allowed on the test.

With accommodation, you are allowed a 4-operations calculator.

Practice questions:

Will be handed out two weeks before the test.

Material covered:

All the material we covered this year. First and second semester included. The material is available on schoology and on www.drbaharav.org.

 1 300
 \vdash n α

Name: _____Block: ____

Practice

1.	Simplify:
----	-----------

$$(2x-3)\cdot(4x^2+6x+9)-(4x^2-3)$$

$$(2x-3)\cdot(2x+3)-(x+4)(2x-8)$$

Result:

Result:

3. Find the equation of the line perpendicular to the line

$$v = 5 - 2x$$

and that includes the point (1,0).

What is the intersection point of these two lines?

4. Find the equation of the line parallel to the line y - 2x = 5

and that includes the point (1,1).

What is the intersection point of these two lines?

Line equation:

Intersection point: ______Plot:

Line equation:

Intersection point: ______Plot:

5. Factor completely:

$$8x^3 + 27$$

6. Factor completely:

$$x^2 - 8x + 15$$

Answer:____

7. Factor completely	
7. Tactor combictory	

$$18x^{3} - 8x$$

$$6x^2 - 19x + 15$$

Answer:_____

Answer:_____

9. Simplify and give restricted values:
$$\frac{x^2 - 4}{x - 3} \cdot \frac{x^2 - 9}{x^2 + 5x + 6}$$

10. Simplify:

$$\frac{(x^3 - y^3)}{2} \div \frac{2x^3y - 2xy^3}{x + y}$$

Restricted Values:

Simplified:

Restricted Values:

Simplified:_____

11. Simplify and give restricted values:

$$\frac{1}{x-4} - \frac{x-1}{x+4} - \frac{6x-16}{x^2-16}$$

12. Simplify:

$$\frac{1}{x-4} - \frac{x-1}{x^2 - x - 12}$$

Restricted Values:_

Restricted Values:

Simplified:

Simplified:

13. Solve:

$$\frac{2}{x^2 - 9} - \frac{2}{x + 3} = \frac{x - 4}{x - 3}$$

14. Solve:

$$\frac{2}{x^2 - 3x - 4} = \frac{1}{x^2 - 5x + 4}$$

Solution: x=

Solution: x=

15. Solve:

$$\frac{7}{5x-1} = \frac{1}{(x+1)}$$

Solution: x=

16. Divide	using	synthetic	division:
TOI DIVIGO	WDIII 5	D y III CII C CI C	ai vibioii.

$$(x^5 + 5x^4 - x^3 - 3x^2 + 5x - 25) \div (x + 5)$$

Answer: ____

17. Divide

$$\frac{30x^8 - 15x^6 + 40x^4}{5x^4}$$

$$\frac{\left(\frac{1}{x-4} - \frac{1}{x+4}\right)}{\left(\frac{1}{x-4} + \frac{1}{x+4}\right)}$$

Answer:

Answer:

19. Divide using synthetic division:

$$(x^5 - 32) \div (x - 2)$$

20. Divide (long division):

$$(64y^3 - 8) \div (4y - 2)$$

Answer:

21. Solve

$$27^{\frac{2}{3}} =$$

22. Solve $16^{1.5} =$ _____

$$27^{\frac{-2}{3}} =$$

 $\left(\frac{1}{8}\right)^{\frac{-2}{3}} =$ _____

23. Simplify such that there are no fractional or negative exponents:

$$\frac{x^{\frac{3}{4}} \cdot y^{\frac{-3}{5}}}{x^{-0.25} \cdot y^{0.2}}$$

24. Simplify such that there are no fractional or negative exponents:

$$\left(x^{\frac{3}{4}}\cdot y^{\frac{2}{3}}\right)^{6}\div\left(x^{\frac{-2}{8}}\cdot y^{2}\right)$$

Answer:

25. Simplify:

$$\sqrt[4]{\frac{64x^5y^7}{36xy^2}}$$

26. Complete the three missing boxes

Answer: _____

$$\sqrt[3]{\frac{81x^8y^{-3}}{z^2}} = \frac{3 \cdot \square}{\square \cdot z} \cdot \sqrt[3]{\square x^2 z}$$

Answer:

Answer:

27. Simplify:

$$2\sqrt{32} - \sqrt{50} + \sqrt{162}$$

28. Simplify:

$$\sqrt[3]{24} - \sqrt[3]{81}$$

Answer:

Answer:

Name: Block:

Practice

29. Simplify (rationalize denominator)

$$\frac{\sqrt{3}+5}{7+\sqrt{3}}$$

30. Simplify (rationalize denominator)

$$\frac{4-2i}{4+2i}$$

Answer: ____

Answer:

31. Simplify

$$(\sqrt{-9} + \sqrt{9}) \cdot (\sqrt{4} + \sqrt{-4})$$

32. Simplify

$$2i \cdot (\sqrt{-9} + \sqrt{9}) + i \cdot (\sqrt{4} + \sqrt{-4})$$

Answer:

Answer:

33. Solve and check

$$x - 5 = \sqrt{x + 7}$$

34. Solve and check

$$\sqrt{x+7} + 8 = x+3$$

Answer:

Name: ______ Block: _____

Practice

35. Solve:

$$x^2 - 81 = 0$$

36. Solve :

$$x^2 - 81x = 0$$

Answer:

Answer: _____

37. Solve:

$$-x^2 + 4x - 3 = 0$$

38. Solve:

$$\frac{1}{2}y^2 - 3y + 9 = 0$$

Answer: ____

Answer:

39. Solve using "Complete the square":

$$x^2 + 8x - 9 = 0$$

40. Solve using "Complete the square":

$$4x^2 + 12x - 7 = 0$$

Answer: _____

Answer:

Name:Block:	Practice
41. Solve	42. Solve
$x^2 - 4x + 1 = 0$	$x^2 + 81 = 0$
Answer:	Answer:
43. Find three consecutive integers such that the square (you can use four operation calculator for this question)	are of the first plus the product of the other two is 46.
Answer:	
44. Find three consecutive even integers such that th two is 28. (you can use four operation calculator	e square of the middle one plus the product of the other for this question)
Answer:	
45. Find three consecutive odd integers such that twi (you can use four operation calculator for this question)	ce the first plus the product of the other two is 73.

Name:	Practice
Block:	ntargents wintergents werter and any other significant
points, and then plot the functions.	ntercepts, y-intercepts, vertex, and any other significant
	1.7
46. $f(x) = 2 \cdot (1 - x) \cdot (x - 3)$	$f(x) = 4x - x^2$
$f(x) = 2 \cdot (1 - x) \cdot (x - 3)$	f(x) = 4x - x
X_intercept:Y_intercept:	X_intercept:Y_intercept:
Vertex:	Vertex:
	Plot:
Plot:	1 100.
40	40
$f(x) = x^2 - 4x + 5$	49. $f(x) = -(x-1)^2 + 2$
f(x) = x + 1x + 3	f(x) = (x - 1) + 2
V intercents	V intercent.
X_intercept:Y_intercept:	X_intercept:Y_intercept:
Vertex:	Vertex:
Plot:	Plot:

Name: _			
Block:			

Practice

1	$\overline{}$	
5	n	
. ,	١,	

$$f(x) = x^2 - 4x + 4$$

51.

$$f(x) = 7 - x$$

X_intercept:______ Y_intercept:______ Vertex:_____

Plot:

X_intercept:______ Y_intercept:______ Vertex:_____

Plot:

52. The sum of two even numbers is 16. Find the numbers such that their product is maximum.

Name:	Practice
Block:	
53. Graph the following function	
$f(x) = 2x^4 - 15x^3 + 39$	$9x^2 - 41x + 15$
) (10) =10 = 100 = 100	
Hint: The function has roots at 1 and 3.	
Factored polynomial:	_
Doots	
Roots:	_
End Behavior:	
Graph:	

54. Solve for x:

a.
$$x = \log_2 64$$
 x=_____

b.
$$2 = \log_7 x$$
 x=_____

c.
$$2^{x+2} = 32$$
 x=_____

55. Solve for x:

a.
$$x^2 = \log_2 16$$
 x=_____

b.
$$2 = \log_7 x^2$$
 x=_____

c.
$$2^{(x^2)} = 64$$
 x=_____

56. Calculate the following.

a.
$$\log 4 + \log 250 =$$

b.
$$\log_2 3 - \log_2 48 =$$

c.
$$\log(10000) - \frac{\log_4 27}{\log_4 3} =$$

d.
$$\log_4\left(\frac{1}{2}\right) = \underline{\hspace{1cm}}$$

e.
$$\log_2(8^{\frac{3}{2}}) =$$

57. Give the value of the following functions.

a.
$$cos(30^\circ) =$$

b.
$$\sin(30^\circ) =$$
c. $\tan(30^\circ) =$

58. Calculate 'a' and 'H' in the below.

59. Determine if each of the below is geometric, arithmetic, or neither

b.
$$\frac{1}{2}$$
, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{8}{11}$...

c.
$$\frac{1}{2}$$
, $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$...

60. Calculate the sum:

$$\sum_{n=0}^{101} (n-50) = ?$$

61. Given the functions

$$f(x) = 2x^2 - 1$$
 and $g(x) = x^2 - 3$

a. Find
$$f(g(x))$$

b. Find
$$g(f(x))$$

c. Find
$$g(x) + f(x)$$

62. Given the functions

$$f(x) = |2x - 1|$$
 and $g(x) = x^2 - 3$

a. Find
$$f(g(x))$$

b. Find
$$g(f(x))$$

c. Find
$$g(x) + f(x)$$

Name:	Practice
Block:	
63. Find the inverse of $f(x)$ using Table and algebraic method, and plot both:	
$f(x) = 1 - \sqrt{x - 2}$	
Remember to indicate range and domain of each function.	
Transmitted to market the same workers of the same same same same same same same sam	

64. Given the function f(x):

Find Range and Domain:

Is the function Even/Odd? _____

Graph f(x + 2). Range and Domain:

Graph $f\left(\frac{x}{2}\right)$. Range and Domain: