Name:

Block:___

Quiz: Unit1. Review. Arithmetic, PEMDAS, Lines

Practice

Group A.

There are <u>10 questions</u> in this quiz, each of equal value. Standard time for the test is <u>15 minutes</u>. No calculator is allowed. (accommodation excepted)

****** Since this is a PRACTICE, you actually have 20 questions.********

1.
$$\frac{7}{4} - \frac{4}{7} =$$

2.
$$\frac{7}{4} \div \frac{4}{7} =$$

Answer:_____

Answer:_____

3.
$$\frac{5}{8} \cdot \frac{4}{7x} \cdot \frac{8}{5} \cdot 2x =$$

4. Solve $(x-3) \cdot \frac{1}{4} = \frac{1}{2} \cdot (12 - x)$

Answer:_____

X=____

5. Simplify:
$$(x-3) \cdot (x+2) - (x-1) =$$

6. Simplify: $(5 - x) \cdot (5 + x) =$

Answer:

Answer:

7.
$$\frac{2x+3}{4} - \frac{3x-4}{3} =$$

8.
$$\frac{3x}{4} \div \frac{9x-6}{8} =$$

9.
$$(2x^{-1})^2 \cdot \frac{3x^4}{(3x)^2} =$$

10.
$$\frac{-3^2 \cdot x^4 \cdot y^{-2}}{2x^5 \cdot (y^3)^4} =$$

11. Solve:
$$9 - 4x + (2x - 2) = 10 + x$$

12. Solve:
$$\frac{6x+9}{3} - (2x+2) = 4 - x$$

13.

(a) Plot the line going through the points:

$$(-2,-4)$$
, $(3,1)$

(b) Specify the coordinates of:

X intercept _____

Y intercept

(c) Write the equation of the line in slope-intercept form:

Answer:

(d) Write the equation of the line in standard form:

Answer:

14.

(a) Plot the line going through the point (2,4) , and has a slope of -3.

(b) Specify the coordinates of:

X intercept _____

Y intercept _____

(c) Write the equation of the line in slope-intercept form:

Answer:

15.

(a) Find the line that goes through the point (0,5) ,and is perpendicular to the line y=2x.

Answer:_____

(b) What is the intersection point of these two lines?

Answer:_____

(c) Plot the two lines, and indicate the intersection point.

16. What is the slope of the line described by $3y + 2x = 5$	17. What is the slope of a line perpendicular to the line that goes through the two points $(2,5)$ and $(-1,3)$?
m=	m=
18. Do the following two lines meet? If they do, what is the intersection point?	19. Calculate the following absolute value expressions:
Line 1: $3y + 2x = 5$ Line 2: $6y = 5 - 4x$	(a) -7 =
	(b) 3 =
	(c) 3 – 7 =
	(d) 3 - 7 =
Meeting= Yes / NO Intersection point=	

20. The picture below describes a right triangle. The 3 sides have slopes denoted as m_1, m_2, m_3 .

What can you say about the value of the product $(m_1 \cdot m_2 \cdot m_3)$? See 4 options below. Explain your answer.

- a) $-\infty < (m_1 \cdot m_2 \cdot m_3) \le -1$
- $b) -1 \leq (m_1 \cdot m_2 \cdot m_3) \leq 0$
- c) $0 \le (m_1 \cdot m_2 \cdot m_3) \le 1$
- d) $1 \leq (m_1 \cdot m_2 \cdot m_3) < \infty$