Descartes' Rule of signs

Question 1:

$\mathrm{P}(\mathrm{x})$	Sign Variations	Possible Positive roots	Actual positive roots	Sign variations of $\mathrm{P}(-\mathrm{x})$	Possible negative roots	Actual negative roots
$x^{2}-x+1$						
$x^{2}-4 x+1$						
$x^{2}-2 x+1$					1	
$x^{2}-__{-} x+1$						
$x^{6}-x^{5}+x^{4}$ $-x^{3}+x^{2}$ $-x+1$						
$x^{6}-x^{5}+x^{4}$ $-x^{3}+x^{2}$ $-x+0$						

Question 2:

My assignment was to plot a given polynomial $P(x)$. I started plotting it (you can see the graph below), but ran out of ink mid-way. I can't remember the original polynomial, but I do remember the following facts:

1. It was a $5^{\text {th }}$ degree polynomial.
2. $P(0)=0$
3. $P(-1)=0$
4. It didn't have any additional x-intercepts, other than the above and the ones in the graph.
5. $P(-0.5)$ was a negative value
6. The graph was heading toward the bottom left of the grid.

Can you help me find the polynomial, and then complete the graph?

Question 3:

Another question I had was to plot a $4^{\text {th }}$ order polynomial. Only this time I lost both the graphing paper AND the question itself. I do remember the following:

1. The graph had an axis of symmetry about the line $\mathrm{x}=1$.
2. The polynomial had a zero at $x=-1$.
3. The polynomial had a zero at $x=2$.
4. The graph went through the point $(1,2)$.

Can you find the polynomial equation and then plot the graph? (you can use the same graph paper as above).

