Unit 11: Polynomial functions

(Chapter 11, page 479)

End behavior in this chapter.

Polynomial expression $P(x)$ ---- Term, coefficient, degree of term, degree of polynomial ---- Leading coefficient ---- Zero of $P(x)$ ---- Example:	
Polynomial equation $\quad P(x)=0$ ---- Root of $P(x)$	
Classifications: ---- Constant, Linear, Quadratic, Cubic ---- Monomial, Binomial, Trinomial	
$P(x) \div D(x)=Q(x)+\frac{R(x)}{D(x)}$ or equivalently: $P(x)=D(x) \cdot Q(x)+R(x)$ ---- Dividend, Divisor, Quotient, Remainder	$\begin{aligned} & \text { Page } \\ & 482 \end{aligned}$
If $P(x) \div D(x)$ has a remainder of zero, than \qquad is a factor of \qquad .	$\begin{aligned} & \text { Page } \\ & 481 \end{aligned}$
Factors and Zeros	
---- Example: $P(x)=x^{3}-3 x^{2}-x+3$ $x=3$ is one zero. Find all the zeros.	

| - -- Polynomial of degree ' n ' has ' n ' zeros |
| :--- | :--- |
| -- Polynomial of degree ' n ' can be factored into ' n ' linear factors |
| -- Multiplicity of a factor |
| -- Complex roots come in conjugate pairs (<-- polynomial with real |
| coefficients) |
| -- Division by $\left(x-x_{1}\right)$, where x_{1} is a root, leaves no remainder |
| (Theorem 11-2 through 11-5) |
| ---- Examples: We have done MANY in class. See the worksheets, and |
| put one here |

