Unit 11: Polynomial functions

(Chapter 11, page 479)

End behavior in this chapter.

Polynomial expression $P(x)$ Term, coefficient, degree of term, degree of polynomial Leading coefficient Zero of $P(x)$ Example:	
Polynomial equation $P(x) = 0$ <u>Root</u> of $P(x)$	
Classifications: Constant, Linear, Quadratic, Cubic	
Monomial, Binomial, Trinomial	
$P(x) \div D(x) = Q(x) + \frac{R(x)}{D(x)}$ or equivalently: $P(x) = D(x) \cdot Q(x) + R(x)$ Dividend, Divisor, Quotient, Remainder	Page 482
If $P(x) \div D(x)$ has a remainder of zero, than is a factor of	Page 481
Factors and Zeros	
Example: $P(x) = x^3 - 3x^2 - x + 3$ x = 3 is one zero. Find all the zeros.	

-- Polynomial of degree 'n' has 'n' zeros

-- Polynomial of degree 'n' can be factored into 'n' linear factors

-- Multiplicity of a factor

-- Complex roots come in conjugate pairs (<-- polynomial with real coefficients)

-- Division by $(x - x_1)$, where x_1 is a root, leaves no remainder

(Theorem 11-2 through 11-5)

---- Examples: We have done MANY in class. See the worksheets, and put one here

Remainder theorem	Theorem 11-1
Example:	
Rational roots theorem	Theorem 11-7
Example:	
Descarte's rule of signs And for negative real roots: <i>P</i> (- <i>x</i>) Example:	Theorem 11-8

--

Graphing	
End behavior: determined by order of polynomial and sign of leading coefficient	
Real roots represent x intercepts Linear factors of multiplicity 1 represent line crossing the x-axis	
Linear factors of multiplicity 2 represent parabola touching the x-axis	
Complex roots do not represent x-axis crossing There are no additional x-axis intercepts to these indicated by the real roots	
Examples:	