Polynomials graphing

Exploring

$$
x^{5}-11 x^{4}+49 x^{3}-111 x^{2}+128 x-60
$$

Do NOT plot it yet. We'll explore it first.

1. We already learned:

1, How manyterms?
2.: What is the degree?
3.Keading coefficient sign?
2. Divide the polynomial by $(x-3)$.

Exploring

$$
x^{5}-11 x^{4}+49 x^{3}-111 x^{2}+128 x-60
$$

havidethe polynomial by $(x-3)$, we get:

$$
x^{4}-8 x^{3}+25 x^{2}-36 x+20
$$

Diviend, Divisor, Quotient,Remainder.
Eactor,zeros:roots. Linear Factors.

2n - Dive the polynomal by $(x-2)$

Exploring

$$
x^{5}-11 x^{4}+49 x^{3}-111 x^{2}+128 x-60
$$

1-nvidethe polynomial by (x-2), we get:

$$
x^{3}-6 x^{2}+13 x-10
$$

Eactor,zeroswroots.

$$
x^{5}-11 x^{4}+49 x^{3}-11 x^{2}+128 x-60=(x-3) \cdot(x-2) \cdot\left(x^{3}-6 x^{2}+13 x-10\right)
$$

2.: Divide the polynomial (again!!) by $(x-2)$

Exploring

$$
x^{5}-11 x^{4}+49 x^{3}-111 x^{2}+128 x-60
$$

1-nvidethe polynomial by $(x-2)$, we get:

$$
x^{2}-4 x+5
$$

Eactorzzeros,roots.

$$
x^{5}-1 x^{4}+49 x^{3}-1-1-x^{2}+128 x-60=(x-3) \cdot(x-2)^{2} \cdot\left(x^{2}-4 x+5\right)
$$

Multiplicity of roots.
2. What are the roots of $\left(x^{2}-4 x+5\right)$?

Exploring

$$
x^{5}-11 x^{4}+49 x^{3}-111 x^{2}+128 x-60
$$

$$
x^{2}-4 x+5=(x-(2-i)) \cdot(x-(2+i))
$$

Complex roots appear as conjugate pairs!!

$$
x^{5}-1-4+42 x^{3}-11 x^{2}+128 x-60=(x-3) \cdot(x-2)^{2} \cdot\left(x^{2}-4 x+5\right)
$$

N-degree polynomial can be factored into n linear roots (complex). Behaviorl Plot

