Date:_____

Unit 12: Logarithms properties

Reminder:

$$y = \log_a(x)$$
 <===> $a^y = x$

Example:

In words:

 $\blacksquare = \log_a(x)$: What number do I need to use as exponent such that $a^{\blacksquare} = x$?

Warm-up

1. $16 = 2^x$	2 . $256 = 2^x$	3. $2048 = 2^x$
4. $x = \log_2 64$	5. $x = \log_2 128$	6. $x = \log_2 256$
7. $x = \log_2 16$	8. $x = \log_4 16$	9. $x = \log_{16} 16$
$10. \mathbf{x} = \log_3\left(\frac{1}{9}\right)$	11. $x = \log_9\left(\frac{1}{9}\right)$	12. $x = \log_{10}(10^7)$

Date:_____

From the definitions:

$$a^{\log_a(x)} = \underline{\hspace{1cm}}$$

$$\log_a(a^x) = \underline{\hspace{1cm}}$$

Product theorem (12-4)

$$\log_a(x \cdot y) = \underline{\hspace{1cm}}$$

(proof on the board. You can copy here, OR put in some examples)

|--|

Division theorem (12-6)

$$\log_a\left(\frac{x}{y}\right) =$$

(proof on the board. You can copy here, OR put in some examples)

Power theorem (12-5)

$$\log_a(x^p) = \underline{\hspace{1cm}}$$

(proof on the board. You can copy here, OR put in some examples)