\qquad

Unit 12: Logarithms properties

Reminder:

$$
y=\log _{a}(x) \quad<===>\quad a^{y}=x
$$

Example:

In words:
■ $=\log _{a}(x)$: What number do I need to use as exponent such that $a^{\mathbf{D}}=x$?

Warm-up

1. $16=2^{x}$	2. $256=2^{x}$	3. $2048=2^{x}$
4. $\mathrm{x}=\log _{2} 64$	5. $\mathrm{x}=\log _{2} 128$	6. $\mathrm{x}=\log _{2} 256$
7. $\mathrm{x}=\log _{2} 16$	8. $\mathrm{x}=\log _{4} 16$	9. $\mathrm{x}=\log _{16} 16$
10. $\mathrm{x}=\log _{3}\left(\frac{1}{9}\right)$	11. $\mathrm{x}=\log _{9}\left(\frac{1}{9}\right)$	12. $\mathrm{x}=\log _{10}\left(10^{7}\right)$

Date: \qquad

From the definitions:

$$
\begin{gathered}
a^{\log _{a}(x)}= \\
\log _{a}\left(a^{x}\right)=
\end{gathered}
$$

Product theorem (12-4)

$$
\log _{a}(x \cdot y)=
$$

(proof on the board. You can copy here, OR put in some examples)

Date: \qquad

Division theorem (12-6)

$$
\log _{a}\left(\frac{x}{y}\right)=
$$

(proof on the board. You can copy here, OR put in some examples)

Power theorem (12-5)

$$
\log _{a}\left(x^{p}\right)=
$$

(proof on the board. You can copy here, OR put in some examples)

