
(Chapter 12, page 514)

Chapter epilogue.

Logarithms	
$\log _{2} 8=?==>2^{?}=8$ Exponential function: $\mathbf{2}^{x}=\mathbf{8}$	
Properties: $\begin{gathered} a^{\log _{a}(x)}= \\ \log _{a}\left(a^{x}\right)= \\ \log _{a}(1)= \end{gathered}$ \qquad \qquad \qquad ---- Examples:	$\begin{aligned} & \text { Theorem } \\ & 12-3 \end{aligned}$
$\log _{a}(x \cdot y)=$ \qquad ---- Example: $\log _{a}\left(\frac{x}{y}\right)=$ \qquad ---- Example: $\log _{a}\left(x^{p}\right)=$ \qquad ---- Example:	Theorem $12-4,5,6$

$\log _{b} M=$	Theorem 12-7
Common logarithms: When the base is 10 . Just omit the base. $\log (x)=$ \qquad Natural logarithm Page 550: $e=$ \qquad $\log _{e}(x)=$ \qquad	
Solve: $\quad 3^{x+5}=81$	
Solve (you will need a calculator): $\quad 3^{x+5}=64$	

