Unit 12: Inverse. Exponents and Logarithms

(Chapter 12, page 514)

Chapter epilogue.

Inverse function Notation : "inverse of $f(x)$ " = $f^{-1}(x)$	Definition Page 518
We mainly discovered through exploration. Three main aspects of describing a function, and how the inverse function is expressed there:	
 Table values - <u>flipping the</u>. Graph - <u>Reflection</u>. Algebraic expression - <u>Three step process for deriving</u> the inverse. 	
Domain and Range of inverse are equal to the and of the original function, respectively.	
 In order for a relation to have an inverse function it has to: 1. Be a function : line test. 2. Be a one-to-one function : line test. 	
Find the inverse function, using 3 methods (table, graph, algorithm) $f(x) = \sqrt{x-1} + 2$	ebraic).
	8 10

		Theorem
	$\log_{h} M =$	12 /
	~~8 <i>0</i> · · ·	
	Examples:	
	Common logarithms : When the base is 10. Just omit the base.	
	$\log(r)$ –	
	$\log(x) = $	
	Natural logarithm Page 550:	
	<i>e</i> =	
	$\log_e(x) = _$	
	Solve: $3^{x+5} = 81$	
	Solve (you will need a calculator): $3^{x+5} = 64$	
L		

--