\qquad

(and how is the title related to the subject matter?)
Terminology Page 534:
Common logarithms: When the base is 10 . Just omit the base.

$$
\log _{10}(x)=\log (x)
$$

Natural logarithm Page 550:

$$
\begin{gathered}
e=2.718281828459 \ldots \\
\log _{e}(x)=\ln (x)
\end{gathered}
$$

Theorem 12-7

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b}
$$

Examples:
===
Solve the questions in Table I, and find the correspondence between a letter and a number. Use this to reveal the important information hidden above!

$$
\begin{aligned}
& \begin{array}{llllllllllll}
4 & 1 & 3 & 0 & 7 & 2 & 2 & 9 & 5 & 13 & 4 & 9
\end{array}
\end{aligned}
$$

(no capitals)

Table I

$2.5+\log _{100}(10)$	$\begin{gathered} P \\ \log _{12}(1) \end{gathered}$
$\begin{gathered} \text { S } \\ \log _{10}(20)+\log _{10}(5) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \log _{7}(7) \end{gathered}$
$\log _{5}(x)=-2$	$3^{x-4}+5=32$
$2+\operatorname{round}(\ln (19))$	$\begin{gathered} \hline D \\ \operatorname{round}(10 \cdot \log (19)) \end{gathered}$

Table I (cont.)

$\text { floor }(10 \cdot \ln (\pi))$	$2^{(x-1)}=32$
$\begin{gathered} \mathrm{A} \\ \log _{3}(5 x-13)=3 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \log _{3}(x+1)-5=-5 \\ \rightarrow \mathrm{D} \text { is: } x+14 \end{gathered}$
$\log (\sqrt[3]{x})=2$ $\rightarrow \text { His: } \frac{x}{2.5 \cdot 10^{5}}+5$	T $8^{2 \log _{8} x+\log _{8} x}=27$ Tis: $4 \cdot x$
A $\log 5+\log x=1$ $\rightarrow \mathrm{A} \text { is: } 5 \cdot x$	$\begin{gathered} \text { C } \\ \log \left(\frac{x^{5} y^{2}}{z^{3}}\right) \end{gathered}$ 15. $5 \cdot \log (x)+2 \cdot \log (y)-3 \cdot \log (z)$ 14. $5 \cdot \log (x) \cdot 2 \cdot \log (y) \div 3 \cdot \log (z)$ 13. $\frac{10}{3} \cdot\{\log (x)+\log (y)-\log (z)\}$

