Unit 14: Sequences and Series

(Chapter 14, page 610)

Serious material from this chapter:

	Dofinition
A sequence is	Page 612
Infinite sequence	
Term	
n'th term	
General term a_n	
Implicit formula (recursive)	
Explicit formula	
Examples	
1,8,27,64,125, Find implicit:	
1, 2, 4, 8, 16, Find implicit AND explicit:	
 Series	Definition
$\dots S_n = $	Page
 Sigma notation:	Page 614
$S_n = \sum_{i=1}^{5} (2n+1)$	
$\overline{n=1}$	
Read: "The sum as goes from 1 to of"	
Examples	
Infinite series:	
$S_n = \sum_{n=1}^{\infty} a_n$	
$\overline{n=1}$	

--

2

Arithmetic sequen	ce and series	
Arithmetic sequence elements is the cons	: The <u>difference</u> between consecutive tant d .	Definition Page 617
The constant d is call	alled the	
Examples:		
n'th term of arithme	tic sequence:	Theorem
	$a_n = a_1 + (n-1)d$	14-1
Examples:		
Find d:		
Given arithmer a_1 and d	tic sequence with $a_3 = 8$, $a_{16} = 47$. Find	
Arithmetic series		Theorem
	$S_n = (a_1 + a_n) \cdot \frac{n}{2}$	14-2
 Examples: Find the sum of 1. Is this arithmetic? 2. What are a₁,d? 3. Solve? 	1, 2, 3, 4, , 99, 100 .	
Your example:		

--

	r
Geometric sequence and series	
Geometric sequence: The ratio between consecutive	Definition
elements is the constant r .	Page 624
The constant r is called the	
Examples:	
n'th term of geometric sequence:	Theorem
n = n + n - 1	14-4
$a_n = a_1 \cdot r^{n-1}$	
Examples:	
Find 11th town of the converse (1, 22.1(,)	
Find 11 th term of the sequence $64, -32, 16, -8, \dots$	
Geometric series	Theorem
$a (1 x^n)$	14-5
$S_n = \frac{a_1 \cdot (1 - r^n)}{1 - r^n}$	
1 - r	
Examples:	
$\sum_{n=1}^{5} (1)^{n+1}$	
$\sum \left(\frac{1}{2}\right) =$	
1. Write first 3 terms	
2. Is this arithmetic or geometric series?	
3 Solve	
Your example:	

--

Infinite geometric sum

Theorem 14-7

$$S = \frac{a_1}{1 - r} \qquad |r| < 1$$

---- Examples:

--

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} =$$

1. Write first 3 terms

2. Is this arithmetic or geometric series?

3. if |r| < 1 , use the formula