Unit 14: Sequences and Series
(Chapter 14, page 610)
Serious material from this chapter:

A sequence is \qquad ---- Infinite sequence ---- Term ---- n'th term	Definition Page 612
General term a_{n} \qquad Implicit formula (recursive) \qquad Explicit formula \qquad Examples \qquad $1,8,27,64,125, \ldots$ Find implicit: \qquad $1,2,4,8,16, \ldots$ Find implicit AND explicit:	
Series $---S_{n}=$	Definition Page
Sigma notation: $S_{n}=\sum_{n=1}^{5}(2 n+1)$ Read: "The sum as \qquad goes from 1 to \qquad of \qquad " \qquad Examples	Page 614
Infinite series: $S_{n}=\sum_{n=1}^{\infty} a_{n}$	

Arithmetic sequence and series	
Arithmetic sequence: The difference between consecutive elements is the constant d. The constant d is called the \qquad \qquad Examples:	Definition Page 617
n'th term of arithmetic sequence: $a_{n}=a_{1}+(n-1) d$ ---- Examples: -- Find d: \qquad -- Given arithmetic sequence with $a_{3}=8, a_{16}=47$. Find a_{1} and d \qquad	Theorem 14-1
Arithmetic series $S_{n}=\left(a_{1}+a_{n}\right) \cdot \frac{n}{2}$ ---- Examples: -- Find the sum of $1,2,3,4, \ldots, 99,100$. 1. Is this arithmetic? 2. What are a_{1}, d ? 3. Solve? -- Your example:	Theorem 14-2

Geometric sequence and series	
Geometric sequence: The ratio between consecutive elements is the constant r. The constant r is called the \qquad ---- Examples:	$\begin{aligned} & \text { Definition } \\ & \text { Page } 624 \end{aligned}$
n'th term of geometric sequence: $a_{n}=a_{1} \cdot r^{n-1}$ ---- Examples: -- Find 11 'th term of the sequence $64,-32,16,-8, \ldots$	$\begin{aligned} & \text { Theorem } \\ & 14-4 \end{aligned}$
Geometric series $S_{n}=\frac{a_{1} \cdot\left(1-r^{n}\right)}{1-r}$ ---- Examples: 1. Write first 3 terms $\sum_{n=1}^{5}\left(\frac{1}{2}\right)^{n+1}=$ 2. Is this arithmetic or geometric series? 3. Solve. Your example:	Theorem 14-5

