Arithmeitc Sequence and Series

Date Period____

Determine if the sequence is arithmetic. If it is, find the common difference.

1) 4, 16, 36, 64, ...

2) -14, -114, -214, -314, ...

3) -21, -121, -221, -321, ...

4) 39, 59, 79, 99, ...

Given the explicit formula for an arithmetic sequence find the first five terms, the 52nd term, and the term named in the problem.

5) $a_n = 12 - 8n$ Find a_{20} 6) $a_n = -2 + 2n$ Find a_{25}

7) $a_n = -1 - 30n$ Find a_{23} 8) $a_n = 24 - 3n$ Find a_{27} Given two terms in an arithmetic sequence find the first five terms, the 52nd term, and the term named in the problem.

9)
$$a_{12} = -117$$
 and $a_{36} = -357$
Find a_{25}

A) First Five Terms: -7, 3, 13, 23, 33

$$a_{52} = 503$$

 $a_{25} = 233$

B) First Five Terms: -7, -17, -27, -37, -47
$$a_{52} = -517$$
 $a_{25} = -247$

C) First Five Terms: -6, 4, 14, 24, 34
$$a_{52} = 504$$
 $a_{25} = 234$

D) First Five Terms: -6, -16, -26, -36, -46
$$a_{52} = -516$$
 $a_{25} = -246$

10)
$$a_{17} = -13.7$$
 and $a_{36} = -15.6$
Find a_{28}

A) First Five Terms: -12.1, -12.2, -12.3, -12.4, -12.5
$$a_{52} = -17.2$$
 $a_{28} = -14.8$

B) First Five Terms: -12.1, -11.2, -10.3, -9.4, -8.5
$$a_{52} = 33.8$$
 $a_{28} = 12.2$

C) First Five Terms: -12.1, -13.2, -14.3, -15.4, -16.5
$$a_{52} = -68.2$$
 $a_{28} = -41.8$

D) First Five Terms: -11.2, -10.3, -9.4, -8.5, -7.6
$$a_{52} = 34.7$$
 $a_{28} = 13.1$

Given the recursive formula for an arithmetic sequence find the common difference and the explicit formula.

11)
$$a_n = a_{n-1} + 30$$

 $a_1 = 23$

12)
$$a_n = a_{n-1} - 4$$

 $a_1 = 14$

Evaluate the related series of each sequence.

Evaluate each arithmetic series described.

15)
$$\sum_{n=1}^{20} (9n - 19)$$

16)
$$\sum_{n=1}^{14} (10 - 5n)$$

Determine the number of terms n in each arithmetic series.

17)
$$\sum_{m=1}^{n} (2 - 6m) = -1900$$

18)
$$\sum_{k=1}^{n} (9k - 8) = 960$$

Arithmeitc Sequence and Series

Determine if the sequence is arithmetic. If it is, find the common difference.

1) 4, 16, 36, 64, ...

Not arithmetic

$$d = -100$$

$$d = -100$$

$$d = 20$$

Given the explicit formula for an arithmetic sequence find the first five terms, the 52nd term, and the term named in the problem.

5) $a_n = 12 - 8n$

Find a_{20}

First Five Terms: 4, -4, -12, -20, -28

$$a_{52} = -404$$

$$a_{20} = -148$$

6) $a_n = -2 + 2n$

Find a_{25}

First Five Terms: 0, 2, 4, 6, 8

$$a_{52} = 102$$

$$a_{25} = 48$$

7) $a_n = -1 - 30n$

Find a_{23}

First Five Terms: -31, -61, -91, -121, -151

$$a_{52} = -1561$$

$$a_{23} = -691$$

8) $a_n = 24 - 3n$

Find
$$a_{27}$$

First Five Terms: 21, 18, 15, 12, 9

$$a_{52} = -132$$

$$a_{27} = -57$$

Given two terms in an arithmetic sequence find the first five terms, the 52nd term, and the term named in the problem.

9)
$$a_{12} = -117$$
 and $a_{36} = -357$
Find a_{25}

A) First Five Terms: -7, 3, 13, 23, 33

$$a_{52} = 503$$

 $a_{25} = 233$

*B) First Five Terms: -7, -17, -27, -37, -47
$$a_{52} = -517$$

$$a_{25} = -247$$

C) First Five Terms: -6, 4, 14, 24, 34
$$a_{52} = 504$$
 $a_{25} = 234$

D) First Five Terms: -6, -16, -26, -36, -46
$$a_{52} = -516$$
 $a_{25} = -246$

10)
$$a_{17} = -13.7$$
 and $a_{36} = -15.6$
Find a_{28}

*A) First Five Terms: -12.1, -12.2, -12.3, -12.4, -12.5
$$a_{52} = -17.2$$
 $a_{28} = -14.8$

B) First Five Terms: -12.1, -11.2, -10.3, -9.4, -8.5
$$a_{52} = 33.8$$
 $a_{28} = 12.2$

C) First Five Terms: -12.1, -13.2, -14.3, -15.4, -16.5
$$a_{52} = -68.2$$
 $a_{28} = -41.8$

D) First Five Terms: -11.2, -10.3, -9.4, -8.5, -7.6
$$a_{52} = 34.7$$
 $a_{28} = 13.1$

Given the recursive formula for an arithmetic sequence find the common difference and the explicit formula.

11)
$$a_n = a_{n-1} + 30$$

 $a_1 = 23$

Common Difference:
$$d = 30$$

Explicit: $a_n = -7 + 30n$

12)
$$a_n = a_{n-1} - 4$$

 $a_1 = 14$

Common Difference: d = -4Explicit: $a_n = 18 - 4n$

Evaluate the related series of each sequence.

Evaluate each arithmetic series described.

15)
$$\sum_{n=1}^{20} (9n - 19)$$

$$\frac{1510}{}$$

16)
$$\sum_{n=1}^{14} (10 - 5n)$$
-385

Determine the number of terms n in each arithmetic series.

17)
$$\sum_{m=1}^{n} (2 - 6m) = -1900$$

18)
$$\sum_{k=1}^{n} (9k - 8) = 960$$

25