Geometric sequences and series

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

1) -1, -4, -16, -64, ...
 2) 1, 4, 16, 64, ...

 A) Common Ratio:
$$r = -3$$
 $a_s = -2187$

 Explicit: $a_n = (-3)^{n-1}$
 A) Common Ratio: $r = 4$

 B) Common Ratio: $r = -4$
 $a_s = 16384$

 Explicit: $a_n = (-4)^{n-1}$
 B) Common Ratio: $r = \frac{1}{3}$

 C) Common Ratio: $r = 3$
 $a_s = -2187$

 Explicit: $a_n = -3^{n-1}$
 B) Common Ratio: $r = \frac{1}{4}$

 D) Common Ratio: $r = 4$
 $a_s = -16384$

 Explicit: $a_n = -4^{n-1}$
 C) Common Ratio: $r = \frac{1}{4}$
 $a_s = -16384$
 $a_s = 16384$

 Explicit: $a_n = -4^{n-1}$
 C) Common Ratio: $r = \frac{1}{4}$
 $a_s = \frac{1}{16384}$
 Explicit: $a_n = (\frac{1}{4})^{n-1}$

 D) Common Ratio: $r = 4$
 $a_s = \frac{1}{16384}$

 Explicit: $a_n = -4^{n-1}$
 Explicit: $a_n = (\frac{1}{4})^{n-1}$

D) Common Ratio: r = 3 $a_8 = 2187$ Explicit: $a_n = 3^{n-1}$

3) 3, -18, 108, -648, ...

4) -4, -12, -36, -108, ...

Date Period

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

5)
$$a_n = -3 \cdot 5^{n-1}$$

6) $a_n = 2 \cdot \left(-\frac{1}{4}\right)^{n-1}$

Given two terms in a geometric sequence find the recursive formula.

7)
$$a_2 = 6$$
 and $a_5 = 48$
 8) $a_1 = 1$ and $a_6 = -7776$

 A) $a_n = a_{n-1} \cdot 2$
 A) $a_n = a_{n-1} \cdot -6$
 $a_1 = 3$
 B) $a_n = a_{n-1} \cdot -6$

 B) $a_n = a_{n-1} \cdot 2$
 B) $a_n = a_{n-1} \cdot 6$
 $a_1 = 6$
 B) $a_n = a_{n-1} \cdot 6$

 (C) $a_n = a_{n-1} \cdot 2$
 C) $a_n = a_{n-1} \cdot 4$
 $a_1 = 7$
 D) $a_n = a_{n-1} \cdot 2$

 (D) $a_n = a_{n-1} \cdot 2$
 D) $a_n = a_{n-1} \cdot -6$

Evaluate each geometric series described.

9)
$$1 + 4 + 16 + 64..., n = 7$$

10) $4 + 16 + 64 + 256..., n = 9$

11)
$$\sum_{n=1}^{9} 4^{n-1}$$

12)
$$\sum_{k=1}^{10} -2 \cdot 4^{k-1}$$

Geometric sequences and series

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

1) -1, -4, -16, -64, ...
 2) 1, 4, 16, 64, ...

 A) Common Ratio:
$$r = -3$$
 *A) Common Ratio: $r = 4$
 $a_g = -2187$
 Explicit: $a_n = (-4)^{n-1}$

 B) Common Ratio: $r = -4$
 B) Common Ratio: $r = \frac{1}{3}$
 $a_g = -16384$
 Explicit: $a_n = (-4)^{n-1}$

 C) Common Ratio: $r = 3$
 $a_g = -2187$

 Explicit: $a_n = -3^{n-1}$
 B) Common Ratio: $r = \frac{1}{3}$

 *D) Common Ratio: $r = 4$
 $a_g = -16384$

 Explicit: $a_n = -4^{n-1}$
 C) Common Ratio: $r = \frac{1}{4}$
 $a_g = -16384$
 Explicit: $a_n = -4^{n-1}$

D) Common Ratio: r = 3 $a_8 = 2187$ Explicit: $a_n = 3^{n-1}$

3) 3, -18, 108, -648, ...

Common Ratio: r = -6 $a_{g} = -839808$ Explicit: $a_{n} = 3 \cdot (-6)^{n-1}$ 4) -4, -12, -36, -108, ... Common Ratio: r = 3 $a_8 = -8748$ Explicit: $a_n = -4 \cdot 3^{n-1}$

Date Period

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

5)
$$a_n = -3 \cdot 5^{n-1}$$

First Five Terms: -3, -15, -75, -375, -1875
 $a_8 = -234375$
6) $a_n = 2 \cdot \left(-\frac{1}{4}\right)^{n-1}$
First Five Terms: 2, $-\frac{1}{2}, \frac{1}{8}, -\frac{1}{32}, \frac{1}{128}$
 $a_8 = -\frac{1}{8192}$

Given two terms in a geometric sequence find the recursive formula.

7)
$$a_2 = 6$$
 and $a_5 = 48$
 8) $a_1 = 1$ and $a_6 = -7776$

 *A) $a_n = a_{n-1} \cdot 2$
 A) $a_n = a_{n-1} \cdot -6$
 $a_1 = 3$
 B) $a_n = a_{n-1} \cdot -6$

 B) $a_n = a_{n-1} \cdot 2$
 B) $a_n = a_{n-1} \cdot 6$
 $a_1 = 6$
 B) $a_n = a_{n-1} \cdot 6$

 (C) $a_n = a_{n-1} \cdot 2$
 C) $a_n = a_{n-1} \cdot 4$
 $a_1 = 7$
 C) $a_n = a_{n-1} \cdot 4$

 (D) $a_n = a_{n-1} \cdot 2$
 *D) $a_n = a_{n-1} \cdot -6$
 $a_1 = 5$
 $a_1 = 1$

Evaluate each geometric series described.

9)
$$1 + 4 + 16 + 64..., n = 7$$
 10) $4 + 16 + 64 + 256..., n = 9$

 5461
 349524

11)
$$\sum_{n=1}^{9} 4^{n-1}$$

87381
12) $\sum_{k=1}^{10} -2 \cdot 4^{k-1}$
-699050