Arithmetic sequence/Series

Recursive formula: $\quad a_{n}=a_{n-1}+d$
Explicit formula: $\quad a_{n}=a_{1}+(n-1) d$
Sum:

$$
S_{n}=\left(a_{1}+a_{n}\right) \cdot \frac{n}{2}
$$

Geometric sequence/Series

Recursive formula:
Explicit formula:

$$
a_{n}=a_{n-1} \cdot r
$$

$a_{n}=a_{1} \cdot r^{n-1}$

Sum:

$$
S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}
$$

Infinite sum: if $|r|<1$ then $\quad S_{\infty}=\frac{a_{1}}{1-r}$

