

There are **15 questions** in this quiz, each worth **4pts**.

You have **40 minutes** to complete the test (more if you have accommodations).

(Note: The test will be weighted on Gradebook as 50 points, compared to quizzes which are usually between 10 to 15 points).

====== Start of test

1. For an arithmetic sequence A, we know that $a_{11} = -22$ and $a_5 = -10$. Find $a_{31} = ?$.

2. Find the explicit formula for a geometric sequence with $g_3 = 15$ and r = 3.

3. Find the sum

 $3 + 8 + 13 + \dots + 53 =?$

4. Find the sum

$$\sum_{i=1}^{32} (i+4(2-i)) = ?$$

5. Find the sum

$$\sum_{k=1}^{\infty} 3^{-k} = ?$$

6. Find the sum

$$\sum_{k=1}^{3} \left(\frac{k}{3} + 3^k\right) = ?$$

The sum of the first 11 elements of an arithmetic sequence is 100. The 11th element of the sequence is 20. Find the first element and the common difference of the sequence.

======

Let $A = \{a_1, a_2, a_3, ...\}$ and $B = \{b_1, b_2, b_3, ...\}$ denote two arithmetic sequences. These will be used in the following 4 questions.

- 8. Is the sequence $C = \{(a_1 + b_1), (a_1 + b_2), (a_1 + b_3), ...\}$ an arithmetic sequence? Justify your answer.
- 9. Is the sequence $D = \{(a_1 + b_1), (a_2 + b_2), (a_3 + b_3), ...\}$ an arithmetic sequence? Justify your answer.
- 10. Is the sequence $E = \{b_1 \cdot a_1, b_1 \cdot a_2, b_1 \cdot a_3 \dots\}$ an arithmetic sequence, a geometric sequence, or neither? Justify your answer.

11. Find the sum of the first 8-terms of the sequence $\{5b_1, 5b_2, 5b_3, ...\}$ in terms of b_1 and b_2 only?

======

12. Find the sum of the first N even numbers in terms of N.

13. Given the explicit formula $a_n = 3 \cdot 2^n + n \cdot 4$, find the sum of the first 5 elements $(a_1 \text{ through } a_5)$. Explain your work.

- 14. Given the recursive formula $a_{n+2} = a_n + 2 \cdot a_{n+1}$, and the two values $a_1 = 3$ and $a_3 = 3$, find a_4 . Explain your work.
- 15. Calculate the following sum

$$\sum_{n=1}^{99} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

(Side note: This is BEYOND the scope of this Test, but just to note, the sum we calculate above is equivalent to the more famous series $\sum_{n=1}^{99} \left(\frac{1}{n(n+1)}\right)$, which can be simplified using the observation $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$).


```
Did you feel well prepared?
```

Image: Image:

==== End of test