Name: \qquad
Block: \qquad

Algebra 2H: Relations, Functions, Graphs Review for test

This IS homework. You need to submit the solved practice test (see pages 2 and beyond) on the day of the test.

Review chapter 3 in the book.
Make sure you are familiar with all the material in the review sheet (given here as small image).

Terms: Chapter 3. Relations, functions, and graphs

(Focus on linear equations and straight-lines)

Relation: Ordered pair
Domain: All possible input values
Range: All possible output values
Function: A relation with one output for each input
Vertical line test

Linear equations (straight lines):

1. No product of variables.
2. No variable has a power greater than 1 .
3. No variable in the denominator.

Slope:

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

Horizontal line slope: 0
Vertical line slope: undefined

Slope-intercept form	$y=m x+b$	m is slope b is y-intercept
Point-slope form	$\left(y-y_{1}\right)=m \cdot\left(x-x_{1}\right)$	m is slope Line contains point $\left(x_{1}, y_{1}\right)$
Two points form	$\left(y-y_{1}\right)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \cdot\left(x-x_{1}\right)$	Line contains point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
Standard form	$A x+B y+C=0$	Slope is $m=-\frac{A}{B}$, if $B \neq 0$

Parallel lines: \quad Equal slope: $m_{2}=m_{1}$, different intercept
Perpendicular lines: $\quad m_{2}=-\frac{1}{m_{1}}$

More on functions

One-to-One function: One input for each valid output
Horizontal line test

Function composition: $\quad \mathrm{f}(\mathrm{g}(\mathrm{x}))$; $(f \circ g)(x)$

Algebra 2H: Relations, Functions, Graphs PRACTICE test

There are $\mathbf{2 0}$ questions in this test, each worth $\mathbf{2 p t s}$.
There are $\mathbf{2}$ additional extra-credit questions, each worth 1pt.
You have $\mathbf{3 0} \mathbf{~ m i n u t e s ~ t o ~ c o m p l e t e ~ t h e ~ t e s t ~ (m o r e ~ i f ~ y o u ~ h a v e ~ a c c o m m o d a t i o n s) . ~}$
$===$ Start of test

For each of the following, choose the most specific name from "Relation", "Function", or "1-to-1 function":

1) (Monday, Block2) , (Monday, Block3) , (Monday, Block1) , (Monday, Block4)
a) Relation
b) Function
c) 1-to-1 function
2) (Block2,Monday) , (Block2, Tuesday) , (Block2, Thursday)
a) Relation
b) Function
c) 1-to-1 function
3) (CS, Block2), (APUSH,Block3) , (Geometry, Block4)
a) Relation
b) Function
c) 1-to-1 function
4)

a) Relation
b) Function
c) 1-to-1 function

$$
==
$$

=ニ=
Find the equation for the following lines:
5) With slope $=4$ and x-intercept=3. Give your result in slope-intercept form.
6) With slope $=4$ and y-intercept=3. Give your result in slope-intercept form.
7) Through (3,1) and (5,7). Give your result in slope-intercept form.
8) Find the slope and y-intercept of a line with equation $6 x+2 y=24$.
9) Parallel to the line $y=\frac{x}{4}+2$, and containing the point $(2,4)$. Give your result in slope-intercept form.
10) Perpendicular to the line $y=2-x$, and having y-intercept 5 . Give your result in slope-intercept form.
11) Write in standard form the equation $5 y=\frac{2}{3} x+1$
12) Is the following equation linear $(y-3 x) \cdot(3 x-y)=3 x-3 y+1$?
13) What is the slope of the line going through the points $(3,-1)$ and $(1,-3)$?
14) What is the slope of the line given by $5 x-2 y+9=27$?
===

Given the following definitions:
$f(x)=\frac{x}{2}-1, \quad g(x)=x \cdot x+2, \quad h(x)=|x-5|$
Find the following:
15) $f(6)$
16) $g\left(\frac{1}{2}\right)$
17) $f(f(g(2)))$
18) $h(-1)$
19) $f(4 x+2)$
20) $(g \circ f)(x)$
===
Extra-credit
21) In the practice you have only one, below, to try and stretch your understanding.
22) A square has two of its adjacent corners at coordinates $(0,2)$ and $(5,0)$. The sides of the square have slopes denoted as $m_{1}, m_{2}, m_{3}, m_{4}$. What is the value of the product $\left(m_{1} \cdot m_{2} \cdot m_{3} \cdot m_{4}\right)$?
=== End of test

