Name:	
Block:	

This IS homework. You need to submit the solved practice test (see pages 2 and beyond) on the day of the test.

Algebra 2: Relations, Functions, Graphs Review for test

Review chapter 3 in the book.

Make sure you are familiar with all the material in the review sheet (given here as small image).

Terms: Chapter 3. Relations, functions, and graphs (Focus on linear equations and straight-lines)			
Relation:Ordered pairDomain:All possible input valuesRange:All possible output values			
Function: A relation w Vertical line test	ith one output for each input		
 Linear equations (straight lines): 1. No product of variables. 2. No variable has a power greater than 1. 3. No variable in the denominator. 			
Slope: $m = \frac{\text{rise}}{\text{run}} = \frac{(y_2 - y_1)}{(x_2 - x_1)}$			
Horizontal line slope: Vertical line slope:	0 undefined		
Slope-intercept form	y = mx + b	m is slope b is y-intercept	
Point-slope form	$(y-y_1) = m \cdot (x-x_1)$	m is slope Line contains point (x_1, y_1)	
Two points form	$(y - y_1) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) \cdot (x - x_1)$	Line contains point (x_1, y_1) and (x_2, y_2)	
Standard form	Ax + By + C = 0	Slope is $m = -\frac{A}{B}$, if $B \neq 0$	
Parallel lines: Equal slope: $m_2 = m_1$, different intercept Perpendicular lines: $m_2 = -\frac{1}{m_1}$			
More on functions			
One-to-One function: One input for each valid output Horizontal line test			
Function composition:	$f(g(x))$; $(f \circ g)(x)$		

Algebra 2: Relations, Functions, Graphs PRACTICE test

There are **20 questions** in this test, each worth **2pts**. There is **1 additional** extra-credit questions, worth **1pt**. You have **30 minutes** to complete the test (more if you have accommodations).

=== Start of test

For each of the following, choose the most specific name from "Relation", "Function", or "1-to-1 function":

1) (Monday, Block2) , (Monday, Block3) , (Monday, Block1) , (Monday, Block4)

a) Relation b) Function c) 1-to-1 function

2) (Block2,Monday) , (Block2, Tuesday) , (Block2, Thursday)

- a) Relation b) Function c) 1-to-1 function
- 3) (CS, Block2), (APUSH, Block3), (Geometry, Block4)
- a) Relation b) Function c) 1-to-1 function

a) Relation

b) Function

c) 1-to-1 function

a) Relation

b) Function

c) 1-to-1 function

===

Find the equation for the following lines:

5) With slope = 4 and x-intercept=3. Give your result in slope-intercept form.

6) With slope = 4 and y-intercept=3. Give your result in slope-intercept form.

7) Through (3,1) and (7,9). Give your result in slope-intercept form.

8) Find the slope and y-intercept of a line with equation 6x+2y=24.

===

Sketch the graph of each line

10	A .,
	·
9	
8	
7	
6	
5	
- A	
2	
2	
100070512240	1
-10 -9 -8 -7 -6 -3 -4 -3 -2 -10	12343678910
-2	
-6	j
-7	1
-8	8
ă	
-10	T

12) Is the following equation linear $(y - 3x) \cdot (3x - y) = 3x - 3y + 1$?

13) What is the slope of the line going through the points (3, -1) and (1, -3)?

14) What is the slope of the line given by 5x - 2y + 9 = 27 ?

=== Given the following definitions: $f(x) = \frac{x}{2} - 1$, $g(x) = x \cdot x + 2$, h(x) = |x - 5|

Find the following:

- 15) *f*(6)
- 16) $g\left(\frac{1}{2}\right)$
- 17) f(f(g(2)))
- 18) h(-1)

19) f(4x+2)

20) $(g \circ f)(x)$

Extra-credit

===

21) A square has two of its adjacent corners at coordinates (0,2) and (5,0). The sides of the square have slopes denoted as m_1, m_2, m_3, m_4 . What is the value of the product $(m_1 \cdot m_2 \cdot m_3 \cdot m_4)$?

=== End of test