Unit 5: Polynomials and polynomials equations
(Chapter 5, page 204)

Important factors in this unit:

Definitions -- Polynomial in x: $\quad a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ -- monomial, binomial, trinomial ---- Example: $5 x^{3}-2 x+7$ Terms: \qquad , \qquad \qquad Coefficients: \qquad \qquad , \qquad Degree of term: \qquad , \qquad , Degree of Polynomial: \qquad (degree of highest term) Like terms: Same variables raised to the same power. $2 x^{3} y^{6}+3 y^{6} x^{3}=5 x^{3} y^{6}$	$\begin{aligned} & \text { Page } \\ & 206 \end{aligned}$
Addition and subtraction of polynomials -- Combine like terms Example: $\left(13 x^{3} y^{2}+3 x^{2} y-5 y\right)+\left(x^{3} y+4 x^{2} y-3 x y+3 y\right)=$	$\begin{aligned} & \text { Page } \\ & 210 \end{aligned}$
Multiplication (product) of polynomials Multiply everything! (FOIL is a special case for binomials) $\left(2 y^{2}+y\right)\left(5 x^{3}-2 x+7\right)=$	$\begin{aligned} & \text { Page } \\ & 214 \end{aligned}$

	Factoring Write an expression as a product.	
	Common factoring formulas (you need to know by heart, and use fluently!) Give example to each below.	Page 215 and onward
	$(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \quad(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}$	
	$(A+B)(A-B)=A^{2}-B^{2}$	
	$A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$ $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$ (SOAP) (SOAP)	
	Factoring strategy: 1. Common factor. 2. Two terms: Try factoring as difference of two squares, or difference or sum of cubes. Three terms: Is it trinomial square? MATH method. More than three terms: Try grouping. 3. Keep factoring. Make sure that each remaining factor is prime.	

3. Keep factoring. Make sure that each remaining factor is prime.
$\left.\begin{array}{|l|l|l|}\hline-\begin{array}{l}\text { Solving equations by factoring } \\ \text { Using the zero products principle } \\ \text {--- Example: } \\ \text { Solve }\end{array} \\ \qquad x^{2}-3 x-28=0\end{array}\right]$
