\qquad

Class/Home worksheet: Alg2H

Factoring (book chapter 5, page 519 and beyond)

Factoring is the reverse of multip Factoring an expression means to w	equivalent expression that is a product.
Common factor: $3 x^{2}+12=$	Common factor: $7 x^{3}+14 x^{2}=$
Common factor: $5 x^{3}-20 x^{3}=$	Common factor: $12 x^{2} y-20 x^{3} y=$
Common factor: $10 a^{4}+15 a^{2}-25 a=$	Common factor: $9 x^{3} y^{2}-6 x^{2} y^{3}+3 x^{3} y^{3}=$
Take a common factor if possible. It will simplify things!	

Problems denoted with ** mark are taken from Exeter Phillips Academy (NH) math curriculum.

Difference of Squares (P. 221)

$$
A^{2}-B^{2}=(A+B) \cdot(A-B)
$$

Factor: $x^{2}-25=$	Factor: $9 x^{2}-16 y^{2}=$
Factor: $\frac{1}{25}-x^{2}=$	Factor (challenge): $x^{16}-1=$
Perfect Squares (P. 220)$\begin{aligned} & A^{2}+2 A B+B^{2}=(A+B)^{2} \\ & A^{2}-2 A B+B^{2}=(A-B)^{2} \end{aligned}$	
Factor: $x^{2}+10 x+25=$	Factor: $x^{2}-14 x+49=$
Factor (hint: rearrange) : $16 y^{2}+49+56 y=$	Factor: $72 x y+16 x^{2}+81 y^{2}=$

Factoring trinomials MATH style

(The common method in Kehillah school!)
Assume a trinomial of the form

$$
a X^{2}+b X+c
$$

Create the following table following the directions below it:

M	A	T	H
$a \cdot c \cdot X^{2}$	$b \cdot X$	Try the various factors of $a \cdot c$ that sum up to b	O

1. Put under M (Multiply) the product $a \cdot c \cdot X^{2}$
2. Put under A (Add) the value of $b \cdot X$
3. Under T (Tries), put the various factor-pairs of the result in M, and try to see if their sum adds up to A.
4. When you find an appropriate pair, mark a smiley face in H (Нарру)!
5. Rewrite the trinomial, by writing the middle term as the sum of two terms, and factor by grouping appropriate terms.

Examples:
I. $\quad 3 x^{2}+8 x+4$

M	A	T	H

II. $2 x^{2}+x-15$

M	A	T	H

III. $x^{2}-2 x-24$

M	A	T	H

Let's try in the case of binomial (though we know the answer already!)
IV. $4 x^{2}-9=4 x^{2}+0 x-9$

M	A	T	H

V. $-2 x^{2}-x+6$

M	A	T	H

From the book, Page 223

(30) $12 a^{2}+36 a+27=$	(38) $9 x^{2}-25=$
(46) (tricky: Don't stop in the middle)	Factor:
$4 x y^{4}-4 x z^{4}=$	$x^{2}+9 x+20=$
$4 x^{2}-3+4 x=$	Factor:
Factor:	

Two more items for factoring: Grouping and Cubes

