Class/Home worksheet: Alg2H

Factoring (book chapter 5, page 519 and beyond)

Problems denoted with ** mark are taken from Exeter Phillips Academy (NH) math curriculum.

Difference of Squares (P. 221)			
$A^2 - B^2 = (A+B) \cdot (A-B)$			
Factor: $x^2 - 25 =$	Factor: $9x^2 - 16y^2 =$		
Factor: $\frac{1}{25} - x^2 =$	Factor (challenge): $x^{16} - 1 =$		
Perfect Squares (P. 220)			
$A^2 + 2AB + B$	$A^2 = (A+B)^2$		
$A^2 - 2AB + B$	$A^2 = (A - B)^2$		
Factor: $x^2 + 10x + 25 =$	Factor: $x^2 - 14x + 49 =$		
Factor (hint: rearrange) : $16y^2 + 49 + 56y =$	Factor: $72xy + 16x^2 + 81y^2 =$		

Factoring trinomials MATH style

(The common method in Kehillah school!)

Assume a trinomial of the form

$$aX^2 + bX + c$$

Create the following table following the directions below it:

М	А	Т	Н
$a \cdot c \cdot X^2$	$b \cdot X$	Try the various factors of $a \cdot c$ that sum up to b	٢

- 1. Put under M (Multiply) the product $a \cdot c \cdot X^2$
- 2. Put under A (Add) the value of $b \cdot X$
- 3. Under T (Tries), put the various factor-pairs of the result in M, and try to see if their sum adds up to A.
- 4. When you find an appropriate pair, mark a smiley face in H (Happy) !
- 5. Rewrite the trinomial, by writing the middle term as the sum of two terms, and factor by grouping appropriate terms.

Examples:

I.
$$3x^2 + 8x + 4$$

М	А	Т	Н

II.
$$2x^2 + x - 15$$

М	А	Т	Н

III. $x^2 - 2x - 24$

М	А	Т	Н

Let's try in the case of binomial (though we know the answer already!) IV. $4x^2 - 9 = 4x^2 + 0x - 9$

М	А	Т	Н

V. $-2x^2 - x + 6$

М	А	Т	Н

From the book, Page 223

$(30) 12a^2 + 36a + 27 =$	(38) $9x^2 - 25 =$
(46) (tricky: Don't stop in the middle)	Factor:
$4xy^4 - 4xz^4 =$	$x^2 + 9x + 20 =$
Factor:	Factor:
$4x^2 - 3 + 4x =$	$6x^2 + 17x + 7 =$

Two more items for factoring: Grouping and Cubes