Algebra $2 \mathrm{w} /$ Trigonometry (Honors and Regular)

Unit 5 : Polynomials and Polynomial Equations

Chapter 5: Sections 5-1 through 5-8.

Definitions:

1) Polynomial in x: $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad$ (monomial, binomial, trinomial)
2) Example: $\quad 5 x^{3}-2 x+7$
a) Terms: $\quad 5 x^{3},-2 x, 7 \quad(\leftarrow$ Note: the minus in -2 x)
b) Coefficients: $5,-2,7$
c) Degree of term: $3,1,0$
d) Note: if we had a term like $4 x^{3} y^{6}$, than the degree of the term is 9 : The sum of degrees of all independent variables in the term
e) Degree of Polynomial: 3 (degree of highest term)
3) Like terms: Same variables raised to the same power. $2 x^{3} y^{6}+3 y^{6} x^{3}=5 x^{3} y^{6}$

Addition and subtraction of polynomials

Multiplication (product) of polynomials : multiply everything! (FOIL is a special case for binomials)

$$
\left(2 y^{2}+y\right)\left(5 x^{3}-2 x+7\right)=10 y^{2} x^{3}-4 y^{2} x+14 y^{2}+5 y x^{3}-2 x y-7 y
$$

Factoring: write an expression as a product.
Special common cases to remember, useful for simplifying and for factoring:

1. $(A+B)^{2}=A^{2}+2 A B+B^{2}$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

$$
\text { 2. }(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \quad ; \quad(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}
$$

3. $(A+B)(A-B)=A^{2}-B^{2}$
4. $A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \quad ; \quad A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$

Solving equations by factoring:

$$
x^{2}-3 x-28=0 \quad \rightarrow \quad(x-7)(x+4)=0 \quad \rightarrow x=7 \quad \text { or } \quad x=-4
$$

General techniques for factoring:

1. Common factor
2. Known formulae: Trinomial Squares, Difference of squares, Difference and sum of Cubes
3. Grouping (polynomial of 4 terms or more)
4. General trinomial of type $a x^{2}+b x+c$ into $(\square x+\square)(\square x+\square)$ by finding the right terms in the ם's. (factors). Various tricks: X-form, Box-form, Slip-n-slide
