Unit 6: Rational expressions and equations

(Chapter 6, page 242)

--

Rational expression			Theorem 7-1	
Quotient of two polynomials $\frac{x^2 + 7xy - 4}{x^2 - y^2} = (x^2 - y^2) \div (x^2 - y^2)$				
Excluded values ; Acce	eptable replacements			
	Example with integers	Example with polynomials	1	
$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$				
Theorem 6-1				
$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$				
Theorem 6-3				
$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ Theorem 6-4				
Addition with UNLIKE denominators				
Integers: Least Commo	n Denominator (LCD) $\frac{2}{9} + \frac{7}{30} - \frac{5}{6} =$			

			Г			
	Division by monomial					
	$(15y^5 - 6y^4 + 18y^3) \div (3y^2) =$					
	Long division		Page 260			
	$(9v^4 + 14v^2 - 8) \div (3v + 2) =$					
	(7y + 1+y = 0) . $(3y + 2) =$					
	Synthetic division $(4x^3 + x + 7) \div (x - 2) =$					

Solving rational equations	Page 266
Solve $\frac{2}{x+5} + \frac{1}{x-5} = \frac{16}{x^2 - 25}$	
Remember: Check your answer, and be aware of excluded values	
Just a short reminder: We had fun with infinite complex fractions. $\frac{\frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{(2 - \dots)}}}}}}=?$	