The year(s) in perspective: 2016 -> 2017

1. How many days were there in 2016?

366 (leap year)

2. Is 2017 a prime number?

Yes!! Previous 2011 , next 2027 (2021 = 43*47)

3. How many days will there be in 2017?

365

2017 New year			Unit 7 Radical expressions	
What is the value of :				
	$\frac{2^{2018} + 2^{2018}}{2^{2018} - 2^{2018}}$	2 ²⁰¹⁶ 2 ²⁰¹⁶		
(A) -1 (B) 1	(C) ⁵ / ₃	(D) 2016	(E) 2 ⁴⁰³²	

Warm-up: Need to know !	Unit 7 Radical expressions
1. $y^7 \cdot y^2 = ?$ 2. $8^3 \cdot 8^{-2} = ?$ 3. $(3x^2y^{-4}) \cdot (4x^3y^2) = ?$ 4. $\frac{4^8}{4^2} = ?$ 5. $\frac{3^{-4}}{3^{-5}} = ?$ 6. $\frac{32x^3y^{10}}{4x^4y^4} = ?$	7. $(4^2)^4 = 4^7$ 8. $(a^{-3})^{-4} = ?$ 9. $(4xy^{-3})^3 = ?$ 10. $(10x^3y^{-2}z^{-4})^2 = ?$ 11. $ -8 = ?$ 12. True or False: a. $ 3x = 3 x $ b. $ a+b = a + b $

2017 N	lew year			Unit 7 Radical expressions	
Which of	the following	is the same a $\frac{2^{2016} \cdot 3^{3}}{6^{2017}}$	s the ratio		
(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) ¹ / ₂	(D) ² / ₃	(E) ³ / ₂	

Drill warm up	
1. $(\sqrt{x+3})^2 =$	
2. $\sqrt{(x+3)^2} =$	
3. $\sqrt[3]{(y-2)^3} =$	
$4. \sqrt{x^3} =$	

Two simple		Unit 7 Radical expressions	
1. $2 = \sqrt{8} \div ?$			
(A) 4 (B) √ō	(C) √4	(D) √Z	
2. $ x + -x =$			
(A) 0 (B) <i>x</i>	(C) -x	(D) 2 · x	

Two simple	Unit 7 Radical expressions
(A) x^4 (B) x^8 (C) x^1	2 (D) x ¹⁶
2. If $\sqrt{M \cdot A \cdot T \cdot H} = M \cdot A \cdot T$. the second s	en the value of H must be:
(A) $M \cdot A \cdot T$ (B) $\sqrt{M \cdot A \cdot T}$	(C) $M^2 \cdot A^2 \cdot T^2$ (D) 1

Warm-up (timed!)

- 2. Simplify: $\sqrt{20x^6y^2z^3}$
- 4. Simplify: $4\sqrt{3} + 2\sqrt{12} 2\sqrt{48} + 3\sqrt{75}$ 5. Rationalize denominator: $\frac{2}{3-2\sqrt{5}}$ 6. Rationalize denominator: $\frac{3-\sqrt{3}}{2+\sqrt{5}}$

Radicals		Unit 7 Radical expressions	
Explain:	$1 = \sqrt{\mathbf{I}} = \sqrt{(-1) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = -1$		

Solving rational expression

It takes 2 hours to drive between the towns of San-Jose and San-Francisco. It takes 8 hours to make the same trip by bicycle.

How long will it take for a bicycle and car to meet, starting at opposite towns at the same time?