## Unit 8: Quadratic equations

(Chapter 8, page 340)

| - Standard form $a x^{2}+b x+c=0$ | Page <br> 342 |  |
| :--- | :--- | :--- |
|  | Quadratic formula <br> ---- Example: Solve the same equation using 3 different <br> methods: <br> Solve quadratic equation using 3 methods: <br> -- Factoring <br> $x^{2}-6 x+8=0$ |  |
| - Completing the square |  |  |
| - Formula |  |  |


|  | Properties of solutions of $a x^{2}+b x+c=0 \quad, \quad a \neq 0$ <br> Discriminant: $\Delta=b^{2}-4 a c$ <br> A. $\Delta>0 \quad$ : $\qquad$ <br> B. $\Delta=0 \quad$ : $\qquad$ <br> C. $\Delta<0$ : $\qquad$ which are conjugate of each other. $\qquad$ <br> ---- Examples | Theorem 8-3 |
| :---: | :---: | :---: |
|  | For the equation $a x^{2}+b x+c=0 \quad, \quad a \neq 0$ <br> -- Sum of solutions is $\qquad$ <br> -- Product of solutions is $\qquad$ | Theorem 8-4 |
|  | Find a quadratic equation given: <br> -- Sum of solutions is 3 , product is $-\frac{1}{4}$. <br> -- The two solutions are $2+\sqrt{5}$ and $2-\sqrt{5}$ <br> Examples: | $\begin{aligned} & \text { Page } \\ & 356 \end{aligned}$ |


| Using quadratic equations: See optimization in Unit 9, maximum minimum problem (aka 'fence') | Page 347 |
| :---: | :---: |
| Pythagorean theorem | Page 348 |
| Equations reducible to quadratic form $\qquad$ Example: <br> Solve $x-10 \sqrt{x}+9=0$ | Page 359 |
| Formulas <br> (see also 'Height of an object problems' in this unit) <br> Solve for $r$ given $V=\pi r^{2} h$ | page 363 |



