Unit 8: Quadratic equations

(Chapter 8, page 340)

--

 Standard form	Page
$ax^2 + bx + c = 0$	342
Quadratic formula	Page 350
	550
 Solve quadratic equation using 3 methods:	
Solve quadratic equation using 5 methods.	
 Example: Solve the same equation using 3 different methods:	
$x^2 - 6x + 8 = 0$	
Factoring	
Completing the square	
Formula	

Properties of solutions of $ax^2 + bx + c = 0$, $a \neq 0$ Discriminant	0 Theorem 8-3
$\Delta = b^2 - 4ac$	
A. $\Delta > 0$:	
B. $\Delta = 0$:	
C. $\Delta < 0$: which are conjute each other.	ugate of
Examples	
For the equation $ax^2 + bx + c = 0$, $a \neq 0$	Theorem 8-4
Sum of solutions is	
Find a quadratic equation given:	Page 356
Sum of solutions is 3, product is $-\frac{1}{4}$.	
The two solutions are $2 + \sqrt{5}$ and $2 - \sqrt{5}$	
Examples:	

Using quadratic equations: See optimization in Unit 9, maximum minimum problem (aka 'fence')	Page 347
Pythagorean theorem	Page 348
Equations reducible to quadratic form Example: Solve $x - 10\sqrt{x} + 9 = 0$	Page 359
Formulas (see also 'Height of an object problems' in this unit) Solve for r given $V = \pi r^2 h$	page 363

--

3

Vertical motion (Height of an object problems)	
The general form of equation for vertical motion is:	Page 321
$h(t) = -16t^2 + v_0 t + h_0$	
where: h(t) - Height at time t, in units of feet v_0 - Starting (initial) vertical velocity, in units of feet- per-second h_0 - Starting (initial) height, in units of feet t - Time, in units of second	
The time at the maximum height is $t_{maxHeight} = \frac{v_0}{32}$	
We did many examples in class. See worksheet. Draw here an image to help you remember this.	