| Name: _ | Practice |
|---------|----------|
| Block:  |          |

## Algebra 2/Trig H

### Collection of problems as practice for the final

## (Practice)

#### Remember:

- 1. The final-test has only <u>30</u> questions. Some with multiple parts.
- 2. You should SHOW YOUR WORK for all parts of the answer to receive full credit.
- 3. Clearly indicate (underline/ box/highlight) your final answer. Only ONE answer per question will be considered.

The use of calculator is NOT allowed.

Good luck!! Dr. Baharav Name: \_\_\_\_\_Block: \_\_\_\_

Practice

**1.** Simplify:

$$(2x-3)\cdot(4x^2+6x+9)-(4x^2-3)$$

2. Simplify:

$$(2x-3)\cdot(2x+3)-(x+4)(2x-8)$$

**3.** Factor completely:

$$8x^3 + 27$$

**4.** Factor completely:

$$x^2 - 8x + 15$$

**5.** Factor completely:

$$18x^3 - 8x$$

**6.** Factor completely:

$$6x^2 - 19x + 15$$

7. Simplify and give restricted values: 
$$\frac{x^2 - 4}{x - 3} \cdot \frac{x^2 - 9}{x^2 + 5x + 6}$$

1. Simplify:

$$\frac{(x^3 - y^3)}{2} \div \frac{2x^3y - 2xy^3}{x + y}$$

Name: \_\_\_\_\_\_Block:

Practice

**8.** Simplify and give restricted values:

$$\frac{1}{x-4} - \frac{x-1}{x+4} - \frac{6x-16}{x^2-16}$$

**9.** Simplify:

$$\frac{1}{x-4} - \frac{x-1}{x^2 - x - 12}$$

**10.** Solve:

$$\frac{2}{x^2 - 9} - \frac{2}{x + 3} = \frac{x - 4}{x - 3}$$

**11.** Solve:

$$\frac{2}{x^2 - 3x - 4} = \frac{1}{x^2 - 5x + 4}$$

**12.** Solve:

$$\frac{7}{5x - 1} = \frac{1}{(x + 1)}$$

**13.** Divide using synthetic division:

$$(x^5 + 5x^4 - x^3 - 3x^2 + 5x - 25) \div (x + 5)$$

**14.** Divide

$$\frac{30x^8 - 15x^6 + 40x^4}{5x^4}$$

**15.** Divide:

$$\frac{\left(\frac{1}{x-4} - \frac{1}{x+4}\right)}{\left(\frac{1}{x-4} + \frac{1}{x+4}\right)}$$

**16.** Divide using synthetic division:

$$(x^5 - 32) \div (x - 2)$$

17. Divide:

$$(64y^3 - 8) \div (4y - 2)$$

**18.** Simplify:

$$\sqrt[4]{\frac{64x^5y^7}{36xy^2}}$$

19. Complete the three missing boxes

$$\sqrt[3]{\frac{81x^8y^{-3}}{z^2}} = \frac{3 \cdot \square}{\square \cdot z} \cdot \sqrt[3]{\square x^2 z}$$

Practice

**20.** Simplify:

$$2\sqrt{32} - \sqrt{50} + \sqrt{162}$$

21. Simplify:

$$\sqrt[3]{24} - \sqrt[3]{81}$$

22. Simplify (rationalize denominator)

$$\frac{\sqrt{3}+5}{7+\sqrt{3}}$$

23. Simplify (rationalize denominator)

$$\frac{4-2i}{4+2i}$$

24. Simplify

$$\left(\sqrt{-9} + \sqrt{9}\right) \cdot \left(\sqrt{4} + \sqrt{-4}\right)$$

25. Simplify

$$2i \cdot (\sqrt{-9} + \sqrt{9}) + i \cdot (\sqrt{4} + \sqrt{-4})$$

26. Solve and check

$$x - 5 = \sqrt{x + 7}$$

27. Solve and check

$$\sqrt{x+7} + 8 = x+3$$

**28.** Solve:

$$x^2 - 81 = 0$$

29. Solve :

$$x^2 - 81x = 0$$

30. Solve

$$-x^2 + 4x - 3 = 0$$

31. Solve

$$\frac{1}{2}y^2 - 3y + 9 = 0$$

32. Solve

$$x^2 - 4x + 1 = 0$$

33. Solve

$$x^2 + 81 = 0$$

34. Find three consecutive integers such that the square of the first plus the product of the other two is 46.

Graph the following functions. Indicate (if relevant) x-intercepts, y-intercepts, vertex, and any other significant points.

| 35.         |                                              |
|-------------|----------------------------------------------|
| <b>၁</b> ၁. |                                              |
|             |                                              |
|             | $f(x) = 2 \cdot (1-x) \cdot (x-3)$           |
|             | $\int (\lambda) - 2 (1 \lambda) (\lambda 3)$ |

$$f(x) = 4x - x^2$$

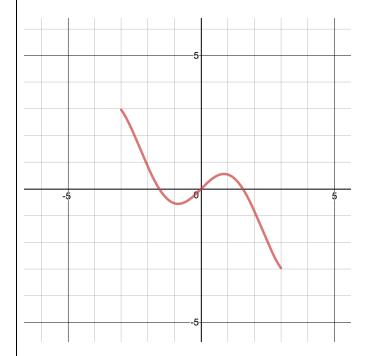
$$f(x) = x^2 - 4x + 5$$

$$f(x) = -(x-1)^2 + 2$$

$$f(x) = x^2 - 4x + 4$$

$$f(x) = 7 - x$$

| Name:   | Practice |
|---------|----------|
| Plools: |          |


| 41. Graph the f | following | function |
|-----------------|-----------|----------|
|-----------------|-----------|----------|

$$f(x) = x^6 + 3x^5 + 2x^4 - x^2 - 3x - 2$$

Hint: The function has roots at -2, 1, -1, and i.

**42.** The sum of two even numbers is 16. Find the numbers such that their product is maximum.

# **43.** Given the function f(x):



Find Range and Domain:

Is the function Even/Odd?

Graph f(x + 2). Range and Domain:

Graph  $f\left(\frac{x}{2}\right)$ . Range and Domain:

**44.** Solve for x:

a. 
$$x = \log_2 64$$

b. 
$$2 = \log_7 x$$

c. 
$$2^{x+2} = 32$$

**45.** Solve for x:

a. 
$$x^2 = \log_2 16$$

b. 
$$2 = \log_7 x^2$$

c. 
$$2^{(x^2)} = 64$$

46. Calculate the following.

a. 
$$\log 4 + \log 250$$

b. 
$$\log_2 3 - \log_2 48$$

c. 
$$\log(10000) - \frac{\log_4 27}{\log_4 3}$$

47. Give the value of the following functions.

48. Determine if each of the below is geometric, arithmetic, or neither

b. 
$$\frac{1}{2}$$
,  $\frac{3}{5}$ ,  $\frac{5}{8}$ ,  $\frac{8}{11}$  ...

c. 
$$\frac{1}{2}$$
,  $\frac{3}{2}$ ,  $\frac{5}{2}$ ,  $\frac{7}{2}$  ...

49. Calculate the sum:

$$\sum_{n=0}^{101} (n-50) = ?$$

lines.

50. Given the functions

$$f(x) = 2x^2 - 1$$
 and  $g(x) = x^2 - 3$ 

a. Find 
$$f(g(x))$$

b. Find 
$$g(f(x))$$

c. Find 
$$g(x) + f(x)$$

51. Find the inverse of f(x) using Table and algebraic method, and plot both:

$$f(x) = 1 - \sqrt{x - 2}$$

Remember to indicate range and domain of each function.

52. Find the equation of the line perpendicular to the line

$$y = 5 - 2x$$

and that includes through the point (1,0). What is the intersection point of these two

**Word problems: See set II** 

=== End of practice questions (There IS part II: Word problems and miscellaneous ).