Name: \qquad
Block: \qquad

Algebra 2: Relations, Functions, Graphs Group A

There are $\mathbf{2 0}$ questions in this test, each worth $\mathbf{2 p t s}$.
There is 1 additional extra-credit questions, worth $\mathbf{1 p t}$.
You have $\mathbf{3 0}$ minutes to complete the test (more if you have accommodations).
$===$ Start of test

For each of the following, choose the most specific name from "Relation", "Function", or "1-to-1 function":

1) $(2,4)(6,8)(-1,4)(0,0)$
a) Relation
b) Function
c) 1-to-1 function
2) $(-1,2)(2,-1)(-3,4)(4,-3)$
a) Relation
b) Function
c) 1-to-1 function
3) $(4,2)(1,3)(4,6)(1,1)$
a) Relation
b) Function
c) 1-to-1 function
4)

a) Relation
b) Function
c) 1-to-1 function
5)

a) Relation
b) Function
c) 1-to-1 function
===

Find the equation for the following lines:
5) With slope $=2$ and y-intercept=-1. Give your result in slope-intercept form.
6) Through $(3,-2)$ with slope $=2$. Give your result in slope-intercept form.
7) Through $(2,1)$ and $(4,0)$. Give your result in slope-intercept form.
8) Through $(3,6)$ and $(4,8)$. Give your result in slope-intercept form.
===
Sketch the graph of each line
9) $x=3$

10) $y=-2 x-2$

11) $2 x+y=4$

===
12) Is the following equation linear $(y-3 x) \cdot 2=(5 x-y)+1$?
13) What is the slope of the line going through the points $(3,0)$ and $(-1,0)$?
14) What is the slope of the line given by $(2 y-3)=3 x+5$?

$$
===
$$

Given the following definitions:
$f(x)=2 x+5, \quad g(x)=x^{2}-3, \quad h(x)=|7-x|$

Find the following:
15) $f(3)$
16) $g(-1)$
17) $g(h(6))$
18) $h(-7)$
19) $g(2 x)$
20) $f\left(\frac{x}{2}+4\right)$
===
Extra-credit
21) The picture below describes a right triangle. The 3 sides have slopes denoted as m_{1}, m_{2}, m_{3}. What can you say about the value of the product $\left(m_{1} \cdot m_{2} \cdot m_{3}\right)$? See 4 options below.

a) $-\infty<\left(m_{1} \cdot m_{2} \cdot m_{3}\right) \leq-1$
b) $-1 \leq\left(m_{1} \cdot m_{2} \cdot m_{3}\right) \leq 0$
c) $0 \leq\left(m_{1} \cdot m_{2} \cdot m_{3}\right) \leq 1$
d) $1 \leq\left(m_{1} \cdot m_{2} \cdot m_{3}\right)<\infty$
$===$ End of test

